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Based on theoretical models, the dynamics of spin-torque nano-oscillators can be substantially

modified by re-injecting the emitted signal to the input of the oscillator after some delay.

Numerical simulations for vortex magnetic tunnel junctions show that with reasonable parameters

this approach can decrease critical currents as much as 25% and linewidths by a factor of 4.

Analytical calculations, which agree well with simulations, demonstrate that these results can be

generalized to any kind of spin-torque oscillator. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922740]

Spin-torque nano-oscillators (STNOs) based on magnetic

tunnel junctions (MTJs) provide the framework for current

driven and tunable frequency sources with enormous range1

(from megahertz to gigahertz) that are compatible with exist-

ing semiconductor processes. With a direct electrical current

applied to the devices, spin-transfer torques (STT) transfer

angular momentum from a fixed polarizing magnetic layer to

a free magnetic layer and induce oscillatory magnetization dy-

namics.2,3 The oscillation of the magnetization causes an os-

cillatory electrical response through the magnetoresistance

effect. Due to their small scale, frequency range, and techno-

logical compatibility, STNOs may have applications in the

telecommunications industry.4,5 Hurdles to their use come

from the large critical current needed to sustain magnetization

oscillations with sufficient spectral purity for industrial adop-

tion as well as low power output. Research has therefore

focused on reducing the critical current,6 decreasing the line-

width,7 and increasing the power output of STNOs.6,8 The

nonlinearity inherent to STNOs is both the boon and bane of

these devices. Non-linearities couple the frequency and ampli-

tude of the oscillator, allowing for the large frequency tunabil-

ity but also providing the main source of linewidth

broadening.9–11 Experimentally, linewidth reduction has been

recently achieved through strategies aimed at controlling the

oscillator’s phase12 such as injection locking to an external

signal,13 self-synchronization of several oscillators,14–16 and

phase-locked loop techniques.17

In this study, we calculate the effect of delayed self-

injection on the critical current, frequency response, and

linewidth of STNOs. This strategy, where the oscillating out-

put current is re-injected at the input of the oscillator has

been shown efficient at improving phase noise in other types

of oscillators.18,19 Using numerical simulations for the dy-

namics, we find that both the critical current and linewidth of

STNOs can be reduced with this technique, while still allow-

ing for frequency tunability. Additionally, we develop

simplified analytic expressions that are in good agreement

with numerical simulations of the frequency response, criti-

cal current, and linewidth—simplifying future experimental

and theoretical work. We focus our numerical results on vor-

tex MTJs because they exhibit good output power spectral

purity, but emphasize that the analytic results are general to

any kind of STNO. The main result is that delayed self-

injection technique can be used to decrease critical currents

by as much as 25% and linewidths by a factor of �4 for

experimentally accessible parameters. We start by describing

the model and numerical technique used in this study. We

then describe numerical results for the critical current, fre-

quency, and linewidth and compare them with derived ana-

lytic expressions.

As illustrated in Fig. 1, the free layer in our system is a

magnetic vortex, with a fixed polarizing layer that can have

components of its uniform magnetization both in and out-of-

plane (in the z-x plane). The resistance of the tunnel junction

depends on the core’s displacement both radially, r, and azi-

muthally, h. The overall change in the parallel and anti-

parallel components of the vortex magnetic texture relative

to the fixed layer contributing to magnetoresistance is zero

for displacement of the core along the x direction, and

FIG. 1. (a) From bottom to top: fixed magnetic layer, insulator, and free vor-

tex magnetic texture. z component of magnetization shows schematically

near displaced core. (b) In-plane magnetization in the body of the displaced

vortex. (c) Schematic circuit diagram of MTJ with delayed-feedback.

a)Author to whom correspondence should be addressed. Electronic mail:

guru.khalsa@nist.gov
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maximum for displacement along the y axis. During oscilla-

tion, the junction resistance varies as

DR ¼ kDR0q sin h; (1)

where q ¼ ðr=r0Þ, r0 is the disc radius, k � 2=3 is a geomet-

rical factor20 describing the amount of vortex magnetic tex-

ture parallel/anti-parallel to the polarizer for core

displacement to the edge of the nanopillar (along y), and

DR0 ¼ ðRAP � RPÞ=2 with RP and RAP is the resistance for

parallel and antiparallel alignment of the magnetizations,

respectively. The delayed self-injected current can be

included by adding an oscillating term to the DC JDC, which

depends on the history of vortex motion. The effective driv-

ing current through the junction when delayed self-injection

is included is

J ¼ JDC½1þ v �qs sin hs�: (2)

The subscript s represents the time shift by s (e.g.,

qs ¼ qðt� s)). � ¼ k DR0

R0
is the available microwave cur-

rent generated by the tunnel junction. v is a dimension-

less parameter representing the fraction of the microwave

current re-injected. If there are losses in the delay circuit

v < 1, but the output may be amplified prior to reinjec-

tion. We study the response of the system for v up to 10

(shown schematically in Fig. 1(c)). When v � 1, the cir-

cuit will be electrically unstable at frequencies n
s for inte-

ger n. This effect is not present in our simulations. In

practice, the working frequency of the system should

avoid these frequencies for stability.

Delayed self-injection has some key differences com-

pared to using an alternating current (AC) to drive the mag-

netization dynamics.13,21 For an AC drive, when the driving

frequency is sufficiently close to the fundamental frequency

of the oscillator, the system can lock to the driving fre-

quency. The system also becomes robust to noise near the

driving frequency. This behavior is due to the nonlinearity of

the system, which allows the oscillator to adjust its fre-

quency to the external driving signal (synchronization).21 In

our case, once transients have resolved, the alternating signal

is necessarily at the frequency of the vortex motion but may

be in- or out-of-phase when injected depending on s. The

response will depend on s in a periodic way. Additionally,

the amplitude of an externally driven signal is controlled by

the user.13 Here, the self-injected signal depends not only on

details of the electronics and MTJ magneto-resistance

(through v and �) but also the radius of gyration. This may

be tuned by the amplification of the delayed signal through v
and the base DC driving the dynamics.

To describe the motion of the free magnetic layer, we

use the well-established Thiele approach22—an effective

equation of motion that assumes the coupling to other

normal-modes can be neglected or integrated out. For the

gyrotropic mode of a vortex,6 the Thiele equation is

�Gẑ � _r � D _r � @W

@r
þ FSTT ¼ 0 ; (3)

where G is the gyrovector magnitude, D ¼ D0 þ D1jrj2 is

the damping, W is the confinement potential, and FSTT is the

spin-transfer force on the vortex core coordinate, r.

Introducing the total current flowing through the junction

(Eq. (2)) into the Thiele equation gives23

_q ¼ aq� bq3 þ 1

2
vcqs sin Dh� /0ð Þ � gq cos h� ghð Þ;

_h ¼ x0 þ x1q
2 þ 1

2
vc

qs

q
cos Dh� /0ð Þ þ

gq

q
sin h� ghð Þ:

(4)

In turn, a and b are the linear and nonlinear effective damping

coefficients of the oscillator. The precession rate depends on

the linear ðx0Þ and nonlinear ðx1Þ frequency. c is the effective

coupling, /0 is the associated phase shift, and Dh ¼ h� hs. gq

and gh are the radial and angular thermal fluctuations, which

we neglect for now and discuss, in detail, when evaluating the

linewidth. Note that all parameters in Eq. (4) depend on the

DC density only. In order to produce the form of Eq. (4), an

averaging procedure21 was used to focus on slowly varying

quantities. The connection between the parameters of Eqs. (3)

and (4) is straightforward but cumbersome.23

The spin-torque acting on the vortex can be decomposed

into three terms, FSTT ¼ Fz þ Fx þ FFLT. The first two terms

describe the damping-like spin-torque due to the out-of-

plane and in-plane components24 of the fixed polarizer

magnet. The third term is the field-like torque (FLT) contri-

bution. The out-of-plane component of the STT effectively

opposes the intrinsic damping of the vortex core and can

lead to auto-oscillations once the critical current is reached.

The terms proportional to c are a direct result of the coupling

to the re-injected current. Interestingly, the coupling constant

c and associated phase shift /0 depend directly on the field-

like torque FFLT and in-plane component of the damping-

like torque Fx. While during pure DC injection, these two

forces cannot lead to vortex auto-oscillations; they have a

huge impact on the dynamics when an alternating current is

part of the input.

In the absence of delayed-feedback (v ¼ 0), Eq. (4) is

the generic equation for a non-linear auto-oscillator. It is

therefore straightforward to extend these results to any kind

of delayed-feedback STNO by considering q as the dimen-

sionless amplitude and h as the precession angle of a single

complex dynamical mode coordinate c ¼ qeih.25–28

To examine vortex dynamics under self-injection, we first

solve numerically the delay-differential equations defined by

Eqs. (2) and (4). We have integrated these equations using a

fourth-order Runge-Kutta scheme for the parameters given in

Table I, with time step Dt ¼ 0:5 ns and simulation time

tmax ¼ 106 ns after initial transient. Fig. 2(a) shows the funda-

mental frequency taken from the Fourier transform of the

simulated junction resistance versus delay time and JDC. The

phase boundary (white) between damped fluctuations and

auto-oscillation is clearly modulated by the delayed signal

and periodic in s. As expected, the phase boundary has perio-

dicity of 2p=x0 (the oscillator period) showing that the phase

relation between the re-injected signal and the vortex core

position dictates the effective critical current.

In order to gain analytic insight on the critical current

reduction, we look for long timescale behavior where, in

steady state, the angle grows linearly with time (h ¼ Xt) and

242402-2 Khalsa, Stiles, and Grollier Appl. Phys. Lett. 106, 242402 (2015)
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the radius becomes fixed ( _q ¼ 0 and ðq� qsÞ ! 0). The

steady state orbit has a radius that depends on the delay time

and periodicity of the oscillator

qS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

b
þ vc

2b
sin Xs� /0ð Þ

r
: (5)

Including the explicit dependence on the current in Eq. (5)

and solving for the critical value (qS ¼ 0), we find that the

critical current with delayed-feedback, J�, takes the form

J� ¼ J�0
1þ vf sin Xs� /0ð Þ ; (6)

where J�0 is the critical current in the absence of delayed-

feedback and f is the scale of the suppression/enhancement

of the critical current. This result confirms that the critical

current oscillates with the periodicity of the oscillator as s is

increased and can be reduced by approximately vf (for small

vf). In Fig. 2(a), the analytic phase boundary of Eq. (6) is

indistinguishable from the numerically determined bound-

ary. Fig. 2(b) shows that Eq. (6) agrees with the simulated

critical current for a large range of v and suggests critical

current suppression by 25% for large amplification. We note

that this reduction in critical current does not necessarily sig-

nifies a decrease in the power consumption of the system.23

Once in steady state, the vortex core radius remains con-

stant and only phase information remains. When v ¼ 0, Eq.

(4) can be solved exactly and previous work has shown a

useful definition of the phase is given by w ¼ hþ �lnq.21

Here, � ¼ x1

b is the nonlinear coupling constant. w is chosen

to define the dynamics deep in the oscillating regime because

it formally grows linearly with time within some neighbor-

hood of the steady state orbit qS even when the radius q fluc-

tuates. To make analytic progress, we treat terms

proportional to c in Eq. (4) as perturbations. This is justified

a posteriori by comparing with the simulated response with

amplified feedback. We find

_w ¼ xNL þ
1

2
vc� cos Dw� /�ð Þ; (7)

where xNL ¼ x0 þ a � is the unperturbed nonlinear fre-

quency of the system. c� ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

is the scaled nonlinear

coupling frequency and /� ¼ /0 þ tan�1� is the phase shift

with delayed-feedback. In Eq. (7), we have replaced the

slowly varying quantity Dh by Dw ¼ w� ws and assumed

that q ¼ qs. If we assume the phase grows linearly with time

(w � Xt) in Eq. (7), we find a transcendental equation for

the frequency of the system

X ¼ xNL þ
1

2
vc� cos Xs� /�ð Þ: (8)

For small values of the coupling or short delay times, Eq. (8)

has one solution bounded between xNL � vc�=2 and

xNL þ vc�=2. As the coupling or s increase, Eq. (8) has multi-

ple solutions for the frequency whenever 1
2
vc�s > 1. Some of

these solutions are stable and others are not. To make analytic

progress, we define the fluctuation as dw ¼ w� Xt and make

the assumption that fluctuations are irrelevant after times lon-

ger than s. Then the fluctuations are suppressed provided

sin ðXs� /�Þ > 0. We find that this gives a good estimate of

stability. Notice that as s increases from a region, where a sin-

gle solution is possible, to a region with multiple solutions,

the stability analysis suggests that there can be a discontinu-

ous jump in the frequency of the system across an unstable

region, as seen in the upper-right portion of Fig. 2(a).

With approximate solutions for the critical current, fre-

quency, and stability of the oscillator with delayed-feedback,

we now attempt a description of the system when thermal

fluctuations are present. For a rigid vortex magnetic texture,

the effect of thermal fluctuations can be approximated by a

fluctuating magnetic field acting in the Thiele equation. Fig.

3(a) shows the linewidth simulated for d� correlated

Gaussian white noise with ensemble averages given by

hgi ¼ 0; hgigj
0i ¼ Cdijdðt� t0Þ: (9)

TABLE I. Numerical parameters used in this study ~J ¼ JDC=ð108A=m2Þ.

Parameter Simulation value

RP 100 X
RAP 200 X
G 1:14� 10�13 J=ðm2radÞ
D0 2:31� 10�15 J=ðm2radÞ
D1 2:31� 10�15 J=ðm2radÞ
r0 2:75� 10�7 m

a �9:19þ 1:69 ~J MHz

b 11:5þ 8:41� 10�3 ~J MHz

x0 455þ 0:823 ~J MHz

x1 114� 0:407 ~J MHz

c 0:114 ~J MHz

/0 0 rad

J�0 5:44� 108 A=m2

f 3:40� 10�2

FIG. 2. (a) Frequency versus DC and delay time for v ¼ 1:5. Critical current

for sustained oscillations is shown in white. Contours separated by 1:5 MHz.

(b) Critical current versus amplification for s ¼ 18 ns. Simulated results

(blue dots) and the analytic expression (red) shown together.
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giðg0iÞ is the fluctuating field along Cartesian coordinate i at

time t ðt0Þ and C ¼ 2kBT D0

r2
0
G2 gives the amplitude of fluctua-

tions necessary to maintain thermal equilibrium at tempera-

ture T with linear effective damping D0. This approach has

been applied to experimental measures of phase and ampli-

tude noise in vortex MTJs with excellent agreement.29 We

have simulated the Thiele equation with this definition of

thermal noise in the presence of delayed-feedback.

We evaluate the spectral quality of oscillations by calcu-

lating the full-width at half-maximum of the primary spectral

peak of the junction resistance at T ¼ 300 K (Fig. 3(a)) rather

than fitting to a line-shape because we have no a priori expec-

tation of the line-shape. Including radial and angular fluctua-

tions in Eq. (1) gives qualitative features of the resistance

variation for which we find

hdR2i ¼ k DR0ð Þ2

2
hdq2i þ q2

Shdh2i
� �

(10)

after averaging over one period. In the absence of the

delayed signal, as the trivial state (qS ¼ 0) of the vortex is

pushed towards steady oscillatory behavior, the linewidth

decreases until the critical current is reached. Near the criti-

cal current (qS 6¼ 0) both radial and phase fluctuations have a

significant effect on the linewidth (full-width at half-maxi-

mum). Deep in the oscillatory regime, the linewidth again

decreases as radial fluctuations become less relevant, and the

spectrum is dominated by phase noise.28 With delayed-

feedback (Fig. 3(a)), we see similar trends accompanying the

expected oscillatory behavior with delay time. Deep in the

oscillatory regime, delayed-feedback can have a dramatic

effect on linewidth—either decreasing it (by approximately a

factor of 4) or increasing it (by more than a factor of 10).

In the oscillatory regime, it is possible to derive approxi-

mate expressions for the linewidth when delayed-feedback is

present. Following the derivation of Eq. (7), but including

the fluctuating field gives the phase equation

_w ¼ xNL þ
1

2
vc� cos Dw� /�ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

qS

gq sin w� ghð Þ:

(11)

The strength of fluctuations in this expression (in polar coor-

dinates) for the phase naturally express the nonlinear broad-

ening of the running frequency in the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

. The

ensemble average of the norm-square of the Fourier trans-

form of Eq. (11) gives the phase noise spectral density in ref-

erence to the carrier frequency. This gives

Sdw fð Þ ¼ hjd~wj2i ¼ 2pDf0 1þ �2ð Þ
2pf � 1

2
vc� sin Xs� /�ð Þsin 2pf s

� �2 þ 1
2
vc� sin Xs� /�ð Þ 1� cos 2pf s½ �

� �2
; (12)

where Df0 ¼ C=2pq2
s is the linewidth in the absence of nonli-

nearity and delayed self-injection. Near the carrier frequency

ðf ! 0Þ, the noise spectral density characterizes the

linewidth

Df ¼ lim
x!0

2pf 2Sdw fð Þ ¼ Df0 1þ �2ð Þ
1� s

2
vc� sin Xs� /�ð Þ

� �2
: (13)

Equation (13) agrees with simulated linewidths for large cur-

rent density (Fig. 3(b)). It suggests that the linewidth can be

suppressed by increasing the amplification and delay of the

delayed signal. While this is seen clearly in Fig. 3(a), this is

the same limit where multiple frequencies may be stabilized.

Using the condition of multiple solutions (1
2
vc�s � 1) as an

upper bound in both the amplification and delay time, Eq.

(13) predicts linewidth suppression by a factor of 4 in good

agreement with simulation. Complications of working in the

regime 1
2
vc�s > 1 include the development of sidebands and

mode-hopping.23

In conclusion, we theoretically investigate the effect of

delayed self-injection on critical current, frequency response,

and linewidth of STNOs and find that this technique can be

used for both critical current and linewidth reduction while

maintaining frequency tunability. The dominant coupling

derives from the otherwise ineffective field-like and in-plane

spin-torques. The importance of this coupling allows for

additional design strategies to push STNOs towards commer-

cial constraints. The agreement between our analytic results

FIG. 3. (a) Linewidth variation versus DC and delay time for v ¼ 1:5 and

T ¼ 300 K. Contour separation is 1:5 MHz. Lowest linewidth achieved with-

out delayed-feedback shown as white dashed-line. (b) Comparison of simu-

lated linewidth (blue dots) with Eq. (11)—with (red) and without (black)

delayed feedback for JDC ¼ 109A=m2.
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for critical current, frequency, and linewidth, and the simu-

lated numerical results vortex MTJs highlights the generality

of this approach to all STNOs. Additionally, this work

expands possibilities of STNOs to high-dimensional dynam-

ics including ultra-efficient synchronization,30 the possible

occurrence and use of chaotic regimes,31 and brain-inspired

reservoir computing.32
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